Как повысить КПД электродвигателя: выбираем решение
Современные электромеханические преобразователи, несмотря на высокую эффективность, все же не обходятся без некоторых потерь энергии, как магнитной, так и электрической и механической. Эти потери сопровождаются выделением тепла, усилением шума и вибрации, которые обусловлены неизбежным трением элементов, перемагничиванием в магнитном поле сердечника якоря электродвигателя, а также скачками нагрузок.
В связи с этим возникает вопрос: можно ли снизить такие "утечки" и, в итоге, повысить коэффициент полезного действия системы? Если да, то как это достичь? Для ответа на эти вопросы мы и подготовили данную статью.
Современные методы увеличения эффективности работы асинхронных двигателей
Существует общепринятая классификация электрических машин на синхронные, у которых частота вращения ротора совпадает с частотой магнитного поля, и на асинхронные, где магнитное поле вращается с более высокой скоростью, чем ротор.
Электродвигатели последнего типа на сегодняшний день являются наиболее распространенными: около 90% всех двигателей, используемых в мире, являются асинхронными. Они применяются во многих отраслях промышленности, сельского хозяйства и сферы ЖКХ.
Это объясняется тем, что они просты в изготовлении, надежны, доступны по цене и не требуют больших эксплуатационных затрат. Кроме того, КПД асинхронных электродвигателей значительно выше, чем синхронных.
Тем не менее, у такой техники есть и существенные недостатки. Один из них – это высокий пусковой ток, недостаточный пусковой момент, несогласованность механического момента на валу привода с механической нагрузкой (что приводит к резкому увеличению силы тока и избыточным механическим нагрузкам при запуске и пониженной производительности в периоды пониженной нагрузки), невозможность точной регулировки скорости работы и так далее. В результате все эти факторы приводят к значительному снижению эффективности работы.
Чтобы справиться с этими проблемами, специалисты используют различные методы, направленные на повышение КПД асинхронных двигателей. Одним из них является использование частотных преобразователей, которые уменьшают пусковой ток, и, следовательно, пусковую мощность двигателя. Кроме этого, применяются специальные системы управления моментом, которые позволяют точно регулировать мощность двигателя и его скорость в зависимости от потребностей. Это повышает производительность механизма и уменьшает избыточную механическую нагрузку. Также существуют специальные схемы управления током, которые минимизируют потери энергии в механизме и увеличивают его КПД. Все эти методы позволяют достичь более эффективной работы асинхронных двигателей.
Возможности оптимизаторов-контроллеров применения оборудования в промышленности, сельском хозяйстве и сфере жилищно-коммунального хозяйства переносят эффективность дробилок, вентиляторов, ленточных транспортеров, обрабатывающих станков, крутильных агрегатов, лебедок и другого оборудования на новый уровень. Они предотвращают перегрузки кронштейнов при запуске мешалок, нейтрализуют гидроудары в трубопроводах и обеспечивают плавный запуск тяжело и очень тяжело нагруженного оборудования, для чего обычные устройства плавного пуска не подходят.
В статье рассказывается о том, как контроллеры-оптимизаторы могут помочь повысить КПД оборудования за более доступную цену, по сравнению с преобразователями. Например, по цене примерно от 90 до 140 тысяч рублей, можно приобрести устройство мощностью 90 кВт от отечественного производителя.
Контроллеры-оптимизаторы – это устройства, которые быстро реагируют на изменение напряжения и снижают расходы электроэнергии на 30-40%. Они также помогают уменьшить воздействие реактивной нагрузки на сеть, повысить КПД привода, а также экономят деньги на конденсаторных компенсирующих устройствах. Применение контроллеров-оптимизаторов также помогает продлить срок службы оборудования и повышает экологичность производства.
Важным преимуществом контроллеров-оптимизаторов является их доступная цена в сравнении с преобразователями частоты. Однако, необходимо учитывать, что контроллеры-оптимизаторы не могут использоваться в случаях, когда требуется изменять скорость вращения электродвигателя.
Таким образом, контроллеры-оптимизаторы оперативно реагирует на изменения напряжения, экономят электроэнергию, уменьшают реактивную нагрузку на сеть и повышают КПД привода. Они также помогают сократить расходы на конденсаторные компенсирующие устройства, продлить срок службы оборудованию и повысить экологичность производства. Незаменимы они только в тех случаях, когда необходимо изменять скорость вращения электродвигателя.
Как выбрать лучшее оборудование для повышения КПД
Если вы планируете повысить КПД двигателя своего оборудования, важно правильно выбрать устройство для этой задачи. Выбор будет зависеть от особенностей работы оборудования. Если необходимо изменять скорость привода, то единственно подходящим решением будет приобретение преобразователя частоты. Однако, если скорость вращения двигателя остается неизменной или не требует большой точности изменения, то лучшим решением будет использование контроллеров-оптимизаторов. Они имеют более доступную стоимость по сравнению с преобразователями частоты.
На заметку: Как повысить КПД электродвигателя
КПД – ключевой фактор для эффективности работы электродвигателя. Его наиболее заметные влияющие факторы – степень загрузки по отношению к номинальной, конструкция и модель, степень износа, отклонение напряжения в сети от номинального. Также следует помнить, что перемотка электродвигателя может привести к снижению его КПД.
Для повышения эффективности работы электропривода, важно обеспечивать его загрузку на уровне не менее 75%, увеличивать коэффициент мощности, регулировать напряжение и частоту подаваемого тока, где это возможно. Но не в каждом случае необходимо или возможно реализовывать все из этих мер, так как реализация этих мер зависит от оборудования.
Существуют приборы для повышения КПД электродвигателя, такие как частотные преобразователи, изменяющие скорость вращения двигателя, изменив частоту питающего напряжения, и устройства плавного пуска, ограничивающие скорость нарастания пускового тока и его максимальное значение.
В данной статье мы рассмотрим современные решения для повышения КПД двигателей с позиций экономической целесообразности и эффективности работы.
Частотные преобразователи используются для улучшения работы асинхронных двигателей. Они способны изменять однофазное или трехфазное напряжение с частотой 50 Гц, превращая его в напряжение с настраиваемой частотой, которая обычно варьируется от 1 до 300-400 Гц, но может достигать и 3000 Гц. Более того, преобразователи регулируют также амплитуду напряжения. Это позволяет добиться значительного повышения эффективности работы электродвигателя.
Одним из главных инструментов управления скоростью электродвигателей в современной промышленности является преобразователь частоты - также известный как «частотник». Принцип работы «частотника» заключается в том, чтобы изменять частоту входного электрического сигнала, поступающего на электродвигатель, что позволяет регулировать скорость вращения вала.
Обычно «частотник»управляет работой электронных ключей, а также контролирует оборудование при помощи электронных цепей. Он включает также схемы, работающие в режиме ключей и открывающие тиристоры или транзисторы. В зависимости от устройства и принципов работы, существуют два класса «частотников».
Первый класс использует непосредственную связь и представляет собой выпрямители. Они обеспечивают низкочастотное напряжение, которое позволяет регулировать скорость вращения привода в определенных пределах. Этот тип устройств не лучшим образом подходит для управления мощным оборудованием, регулирующим множество технологических параметров.
Второй тип устройств использует промежуточное звено постоянного тока. В таких аппаратах производится двойное преобразование энергии, чтобы обеспечить выходное напряжение с необходимой амплитудой и частотой. Это дает возможность применять их для управления электродвигателями с широким диапазоном мощности и скоростью вращения. Однако, несмотря на их многофункциональность, такие преобразователи частоты имеют несколько более низкий КПД, чем выпрямители.
Несмотря на это, устройства второго типа являются наиболее популярными среди «частотников», которые обеспечивают плавное регулирование скорости вращения двигателей с помощью электронной технологии.
Возможности, которые может предоставить частотный преобразователь, во многом зависят от соответствия его функциональных возможностей целям использования. Например, для оснащения электроприводов насосов и вентиляторов используются преобразователи с невысокой перегрузочной способностью и, зачастую, с U/f-управлением. При необходимости такие преобразователи могут повышать начальное значение выходного напряжения, с целью увеличения момента двигателя на низких частотах.
Устройства с векторным управлением являются более совершенными. Они регулируют не только частоту и амплитуду выходного напряжения, но и фазы тока, протекающего через обмотки статора. Такие преобразователи устанавливаются на прокатные станы, конвейеры, подъемное, упаковочное оборудование и так далее.
В случае, если нужно выполнить контролируемое торможение двигателя, используется функция замедления, которую может обеспечить частотный преобразователь. Однако, если требуется интенсивное замедление, может потребоваться использование «частотника», оснащенного встроенными или внешними блоком торможения и тормозным резистором, или рекуперативным блоком торможения. При динамическом торможении двигатель переходит в генераторный режим и трансформирует механическую энергию в электрическую, которая возвращается в звено постоянного тока и либо рассеивается в виде тепла на сопротивлении тормозного резистора, либо возвращает энергию в сеть посредством рекуперации. Такой подход подходит для станкового и конвейерного оборудования.
Частотный преобразователь с обратной связью позволяет поддерживать постоянную скорость вращения при переменной нагрузке с более высокой точностью, чем преобразователь без обратной связи, что повышает качество технологического процесса в замкнутых системах. Подобные устройства широко используются в робототехнике, дерево- и металлообработке, в системах высокоточного позиционирования.
Запись о стоимости «частотников»
В настоящее время, по словам финансистов, стоимость «частотников» нестабильна: за последние полтора года цены значительно увеличились. Это обусловлено не только колебаниями валютного курса, но и другими факторами. Например, частотные преобразователи производства России и зарубежных стран мощностью 90 кВт стояли примерно от 200 до 700 тысяч рублей для покупателей в 2021 году.
Достоинства и недостатки преобразователя частоты для асинхронного двигателя, описанного выше, имеют свои преимущества и недостатки. Одним из главных достоинств является снижение расхода электроэнергии, также преобразователь обеспечивает плавный запуск привода, высокую точность регулировки и увеличивает пусковой момент. Благодаря этому, преобразователь стабилизирует скорость вращения при переменной нагрузке, и в совокупности все указанные преимущества позволяют повысить коэффициент полезного действия машины.
Но к недостаткам преобразователя можно отнести высокую стоимость, что может отпугнуть потенциальных покупателей. Также его использование может вызывать создание электромагнитных помех в процессе работы.
Таким образом, при использовании преобразователя частоты необходимо учитывать и достоинства, и недостатки, и сделать окончательный выбор в зависимости от конкретных условий эксплуатации и требований.
Контроллеры-оптимизаторы: решение задач плавного пуска
Устройства плавного пуска (УПП) необходимы для обеспечения плавного запуска, разгона и остановки электродвигателя. Они ограничивают скорость увеличения пускового тока в течение определенного времени. Однако традиционные устройства плавного пуска не учитывают потребление электроэнергии, что не способствует повышению КПД. Кроме того, их можно применять только для управления приводами с небольшой нагрузкой на валу.
В настоящее время существуют новые разновидности УПП – контроллеры-оптимизаторы, позволяющие повысить энергоэффективность двигателей за счет согласования крутящего момента с моментом нагрузки и, как следствие, снижения потребления электроэнергии на минимальных нагрузках на 30–40%. Они предназначены для приводов, не требующих изменения числа оборотов двигателя.
В частности, эскалаторы потребляют большое количество электроэнергии. Для их снижения необходимо уменьшить скорость движения, но это невозможно из-за необходимости обеспечения быстрого подъема пассажиров. Контроллеры-оптимизаторы решают эту задачу, позволяя снизить энергопотребление без изменения скорости электропривода в случаях, когда он недогружен.
Контроллеры-оптимизаторы представляют собой компоненты, которые контролируют фазы тока и напряжения питания электродвигателя. В результате этого осуществляется полное управление приводом на всех его этапах работы, а также защита его от таких аномалий, как нарушение чередования фаз или пониженного/повышенного напряжения. Это устройство эффективно согласует значение крутящего момента, развиваемого двигателем, и значение механического момента, нагружающего вал привода. Коэффициент мощности повышается, при этом скорость вращения ротора остается прежней. Важно отметить, что контроллеры-оптимизаторы не требуют подключения дополнительных устройств, так как их функциональность является завершенной.
Кроме того, контроллеры-оптимизаторы обладают способностью прекращать брать мощность из питающей сети в те моменты, когда полупроводниковые переходы тиристоров закрыты, то есть не пропускают электрический ток. Открываются тиристоры при поступлении управляющих импульсов. Задержка подачи управляющих импульсов определяется степенью нагрузки привода. При переходе тока через ноль тиристоры закрываются.
Очень важно отметить, что контроллеры-оптимизаторы реагируют на изменение нагрузки настолько оперативно, что скорость реакции составляет лишь сотые доли секунды.
Фото: freepik.com